

Human Foods Program

Approach to the safety assessment of protein ingredients for use in human food

Kristi Muldoon-Jacobs, Ph.D. Director Office of Food Chemical Safety, Dietary Supplements, and Innovation Human Foods Program U.S. Food and Drug Administration

Background

- Long history of protein consumption.
- FDA has a long history of evaluating the safety of proteins.
 - Bakers yeast protein and modified cottonseed products (1970s)
 - Recombinant chymosin (1990)
 - Mycoprotein (2002)
- Increased interest recently (2013-current)
 - Potato protein isolates,
 - Barley and rice protein isolate,
 - Soy leghemoglobin
 - (etc.)

Adapted from: Eastham & Leman, Curr Op Food Science, 2024, 58:101194

Background

- Alternative protein products are a spectrum of products
 - Traditional plant proteins
 - Fungal proteins
 - Precision fermentation products
 - Plant molecular farming products
 - Whole foods from plant biotechnology
 - Animal cell culture
- We have programs that can accommodate all these products.

Pre-market engagement

Our regulatory processes typically begin with pre-submission meetings.

- This is some of our most valuable work
- Developers receive scientific and regulatory suggestions from FDA.
 - 1. Ensures products are directed to the most appropriate program,
 - 2. Makes the regulatory process more predictable, and
 - 3. Identifies potentially unsafe products very early in development providing public health protection and efficient use of developer resources.

Pre-market engagement

- Two use cases:
 - Purified ingredients
 - New uses of traditional ingredients/foods
 - Precision fermentation products
 - Molecular farming products
 - Whole foods
 - Plant biotechnology
 - Human food from cultured animal cells

Purified ingredients

Proteins can have a wide range of intended uses in food

• Macro ingredients

- Protein used as a significant nutrient source
- Processing aids
 - Little, if any, of the protein present in the final food.

Weight-of-evidence approach is used to assess safety.

- This approach takes into account...
 - the identity (source, history of use in food) and intended use of the protein.
- Provides flexibility to ensure the appropriate analyses are performed for the substance and use being evaluated.

Purified ingredients

- We consider factors such as:
 - Source of the protein
 - Protein type and family—does it raise a potential concern?
 - Dietary intake level
 - Biological function (mode of action)
 - Amino acid sequence comparison with known allergens and toxins
 - In vitro digestibility in simulated gastric fluid
 - Oral toxicity studies (often acute or short term tox studies)
 - Additional studies as warranted

FDA GRN Inventory

Purified ingredients

- Animal studies
 - We support efforts to replace, reduce and refine animal studies when supportable by the science. For protein evaluations we request them when warranted based on the existing data and information.
 - Many, many proteins are routinely safely consumed and that generally the proteins/sources known to be harmful are well known (e.g., toxins and allergens).
 - Acute toxicity studies in animals have sometimes been an element of the weightof-evidence approach.
 - In our view, animal studies should be performed on a case-by-case basis when dictated by protein function or other evidence (e.g., in silico analysis).

Whole foods - plants

- Comparative approach
 - Described by Codex Alimentarius Guideline for the Conduct of Food Safety
 Assessment of Foods Derived from Recombinant-DNA Plants
 - Compare the safety of new foods to those with a history of safe use.
- Generally assume 100% replacement with conventional counterpart.
 - Three components
 - Molecular characterization to define the nucleic acid change
 - Safety of newly expressed substances
 - Compositional analysis of key nutrients, anti-nutrients and toxicants
- Goal is to assess whether the new food is as safe as comparable food
 - If we concluded it were not as safe as comparable food a risk assessment process would be warranted.

Whole foods (plants)

- Allergenicity
 - Significant difference between use of a protein as a purified ingredient versus use of a protein as a component of a commodity crop.
 - Purified ingredients are typically used in foods that include a product label where allergens can be declared.
 - In contrast, it would be challenging to label a whole food in a way that identifies new or unexpected allergens in the food.
 - Corn is a fungible commodity where many varieties are routinely commingled as part of typical agricultural practices.
 - For whole plant foods it is especially important that we ensure any new proteins are unlikely to be allergens.

Human food from cultured animal cells

- FDA conducts premarket consultations to evaluate:
 - Production materials, processes, and manufacturing controls
 - Initial tissue collection
 - Development and maintenance of cell lines and banks
 - Proliferation and differentiation of cells through the time of harvest
 - Components and inputs
- FDA's evaluation focuses on the properties of the harvested cell material that are relevant for safety, including the potential for unlawful food additives and other adulterants
- FDA will engage with USDA on consultations involving livestock and poultry cell lines and share the results of consultations.

Food from cultured animal cells

- In the context of the completed consultations, FDA considered:
 - Cell sourcing, cell species identity, cell modifications, cell line stability, differentiation
 - Cell bank generation
 - Detailed description of production process and material inputs, including information on safety, regulatory status of media inputs
 - Stepwise hazard analysis with rationale for potential hazards (i.e., chemical, biological, physical) and preventive controls employed
 - Characterization and composition of the harvested cell material and how it compares with a conventional comparator along with proposed specifications
 - Conclusions about safety of the harvested cell material
 - Supplemental and corroborative confidential, commercial or trade secret information placed in separate appendices

Background

- We recognize and appreciate the recent interest in identifying new or alternative protein sources.
- While FDA supports innovation in food including new protein sources, we must ensure that new, innovative products are <u>safe</u>.
- Increased transparency of our assessment of ingredients in the food supply is part of our approach to enhance <u>food chemical safety</u>.

Conclusions

- Innovations in science and technology continue to generate new ways of producing food.
 - e.g., precision fermentation, plant molecular farming, animal cell culture
- FDA combines long-standing authorities with policy and scientific knowledge to regulate food safety.
 - This approach is flexible and adaptable to a wide variety of new food production technologies.
- We recognize that new proteins and new technologies will bring new challenges. We are confident that our science-based approach will enable appropriate flexibility to ensure food safety.

Food Ingredients & Packaging | FDA

- Contacts:
 - premarkt@fda.hhs.gov
 - plantbiotech@fda.hhs.gov
 - animalcellculturefoods@fda.hhs.gov

Human Foods Program