ONEG[®] Scaling up precision fermentation

Alternative Proteins for Food and Feed International Conference 2024

Chris Landowski CTO & Co-Founder, Onego Bio

EIT Food iVZW, Protein Diversification Think Tank

IMPROVING FOOD TOGETHER

Who we are

EIT Food Protein Diversification **Think Tank**

Established by **experts from the EIT** Food community Think Tank convenes selected stakeholders and partners, fostering broad and inclusive participation to overcome barriers to innovation in the field of protein diversification.

Co-funded by the **European Union**

Onego Bio is a US-Finnish B2B ingredient supplier delivering the perfect protein at scale

Bioalbumen[®] offers unmatched stability, reliability, and sustainability benefits

Performance & Taste Parity

- Nutritional profile is the gold-standard quality of egg protein
- Consistent quality and functionality that's proven to work in all major food
 applications
- "Plug and play" solution with easy integration to formulas across all major food applications

Stable Pricing

- On average, comparable cost to chicken egg white protein
- Stabilized margin from reliable supply and predictable pricing

Supply Resiliency

• Offers a reliable and cost-stable protein source, reducing customer exposure to market volatility and ensuring consistent supply to meet demand efficiently.

Sustainability Win-Win

- 100% animal-free and ethical with guaranteed food safety
- 90% less GHG emissions, 95% less land use and 72% less water use

Scaling up alternative proteins

Alternative protein landscape

Plant-based

Made from crops like soy, peas, and wheat

Challenges in product performance (functionality, texture and flavor)

Biomass fermentation

Growing fungal or bacterial cells to human nutrition

Challenges in regulatory approvals, taste, functionality and lack of reference

Precision fermentation

Growing animal originated proteins in bioreactors

Challenges in regulatory approvals and price to some ingredients/technologies

Cultivated meat

Growing meat muscle cells in bioreactors

Challenges in regulatory approvals, technology readiness and price

Cellular agriculture means producing food ingredients by using cell technologies and microorganisms instead of animals

The precision fermentation process

nutrients, water

conditions in the bioreactor

water and biomass, purified and spray-dried

delivered to customers for food processing, bakery, confectionary industries

Considerations for scaling up protein production

Base technology

Choice of base technology and host organism

Process optimization

Develop and invest in price effective and scalable technology Strategic scaling

Take your time to scale! Rushing to scale too early can create unforeseen challenges Economic planning

Technical economical calculations to support planning, need a pathway to profitability

Microbial cell factory options - Host systems for protein production tech

Bacteria

- Most common and easy to access
- Short cultures
- Intracellular/secretor
- Lack N-linked glycans

Escherichia coli

Bacillius subtilis

Yeasts

- Most common and easy to access
- Secretor •
- Media containing methanol
- Moderate expression ۲
- High biomass growth ٠

Filamentous fungi

- Secretor
- Simple media •
- High expression
- Low biomass growth
- Protease control knowledge is the key

Trichoderma reesei

Myceliophthora thermophila

Aspergillus niger

Aspergillus oryzae

Cell morphology

Cell density and morphology

- Viscosity
- Agitation and aeration
- Thicker cultures require more energy and more oxygen
- Require more nutrients

Modifying morphology

- Fungal filaments can be shortened with genetic engineering
- Hyperbranching can reduce the viscosity by 90%
- The reduced viscosity improves oxygen transfer
- Allowing strains with these mutations to accumulate greater biomass during the growth phase.

Carbon input and utilization

Cell density

• High cell density creates more demands

Feeding the organism

- Keep biomass levels low
- Use as little sugar as possible
- Avoid putting carbon into biomass and CO₂
- Decoupled growth from secretion

Carbon conversion rate

- Sugar feed can be the most expensive part of the process
- Efficiency of converting sugar into product protein
- For example, 3 kg sugar to 1 kg protein product

Bioprocess considerations

Important factors:

- pH
- Temperature/heat transfer
- Cell density
- Viscosity behavior of biomass (modeling CFD fluid dynamics)
- Dissolved oxygen/oxygen transfer
- Feeding nutrients
- Agitation impellers

Requires energy

- Stirring
- Cooling water

Operational comparison

88

Processing in 100 m3 scale

	Unit	Yeast	Filamentous [®] fungus ®
Cell mass waste	tn/batch	45	15
Cooling power	kW	600	350
Process air	m ³ /min	110	60
Oxygen need	m³/h	700	0
Methanol (toxic)	m ³ /h	0.8	0

ONEGO

Trichoderma reesei, fungal technology offers superior productivity and low production costs

Filamentous fungi has an inherently higher output at a lower cost than *Pichia* (yeast), the most common alternative

- High cell density and volume
- Heavy cooling power
- High oxygen demand
- Lower supernatant volume
- Methanol added (toxic/flammable)

ONEG

• In 100 m³ = 2500 kg dry product

Filamentous Fungi

- Low cell density and volume
- Lower cooling
- Low oxygen demand
- High supernatant
- High secretion
- In 100 m³ = 8000 kg dry product

Liu CW, et al., Scientific Reports 2016 Werten MWT, et al., Yeast 1999 Bradander PD, et al. Biotechnology Advances 2023

Estimated costs

	Tank volume	Fungus	Yeast
Production output	100 m ³	8000 kg	2500 kg
	250 m ³	20,000 kg	_*
Batch cost	100 m ³	\$100,000	\$100,000
Datch COSt	250 m ³	\$120,000	_*
Theoretical cost	100 m ³	\$12.5/kg	\$40/kg
of goods	250 m ³	\$6/kg	_ *

These are estimated cost of goods for food ingredient proteins; Contract manufacturing will increase the cost * Not a realistic scale for yeast

Upstream challenges

The bigger you go, the slower everything happens

• Heat removal/cooling, mixing, mass transfer

Surface to volume ratio changes equal change in performance

• Cooling needs, need to add height

Height: Diameter ratio

- Normally 3:1 or 2:1
- Changes in this ratio can affect the oxygen and CO₂ removal
- Surface aeration critical factor
- Growth can occur on walls
- To accommodate low oxygen supply, need to increase impeller speed or blow in air or oxygen

Complications scale up: mixing

Upstream scale up practices

Highly empirical - Common rules

Depends on various parameters, including the gas flow rate, the sparger type, the agitation speed, and properties of the culture medium

• Advanced modelling of liquid and gas environment can help prediction

Scale up table

				Production Biore	actor (10 ⁴ L)	
Scale-Up Criterion	Designation	Small-Scale Bioreactor (80 L)	Constant P/V	Constant Impeller Rotation (N)	Constant Tip Speed	Constant Re
Energy input	P a N ³ D ⁵	1	125	3,125	25	0.2
Volumetric energy input	$P/V \propto N^3 D^2$	1	1	25	0.2	0.0016
Impeller rotation	N	þ	0.34	1	0.2	0.04
Impeller diameter	D	1	5	5	5	5
Impeller-pump rate	$Q \propto N D^3$	1	42.5	125	25	5
Circulation time	$t_c \alpha V/Q$	1	2.94	1	5	25
Impeller-tip speed	VaND	1	1.7	5	1	0.2
Reynold's number	Re a N D ²	1	8.5	25	5	1

• Keeping power to volume constant will have a negative effect on which parameters?

- Keeping tip speed the same?
- Trade off and compensation
- What are the needs of the process and organism

More upstream scale up considerations

Higher scale means higher demands for the biomass:

- Heat transfer/cooling challenges
- Air/oxygen transfer
- Stirring powder

Certain organisms cannot be easily or reliably scaled up to full scale for technical reasons

Downstream processing

3. Downstream processing

Target protein is separated from broth and biomass, purified, and spray-dried

Secreting organisms are simpler to work with

- cell lysis with high biomass, stress, etc.
 - cell wall carbohydrate, DNA
- Host protein secretion minimized or completely removed
- 95% recovery possible

Bacterial intracellular products take more time and effort to process

- genomic DNA
- lots of host cell proteins to remove
- More DSP steps
- More product loss, less yield

Downstream scale up: Technical aspects to consider

Certain process methods don't scale up that well... like chromatography (waste-water becomes large)

Ľ
1 7 1

Food products: process your product quickly, to avoid contamination possibility. You need big machinery to keep a high enough pace

Manufacturing & Regulatory

Manufacturing considerations

- Technology readiness
 - Early process and material is expensive.... How much willing to invest in this?
- When will an economically viable process be available?
 - Determines how much funding will be necessary to bridge this gap
- Through co-manufacturing to own factory setup, combining them at later stages

Regulatory landscape

Singapore / SFA

- 6-12 months
- Transparent process with clear requirements

Conclusions

- Technology readiness
- Cost calculations and reflecting on reality
- Developing and investing in price effective and scalable technology
- Extremely low \$/kg costs can be achieved in large scale manufacturing

THANK YOU

chris@onego.bio

hello@onego.bio
onego.bio
onego-bio
Onego_Bio
onego_bio

