

Implementation of analytical approaches for a first evaluation of risk associated to ciguatoxins in New Caledonia

Manoëlla Sibat, Simon Tanniou, Korian Lhaute, Florence Antypas, Philipp Hess, Thierry Jauffrais

Aquatic Toxins Symposium

10-11 June 2024, Berlin

Context in New Caledonia

- Major economic activities: Tourism, reef and lagoon fisheries, aquaculture
- Like other islands in the Southwestern Pacific HAB have increasingly been reported in recente decades

- Impact of HAB and associated phycotoxins are poorly documented
- A lack of knowledge regarding potential sanitary and socioeconomic threats

Ciguatera poisoning in NC

- Causative organisms : unknown
- CTXs compounds responsible : unknown
- > Toxin profile : unknown

DASS, 2017

Epidemiological study in Lifou from 2017 to 2020

Data collected from January 2017 to March 2020 (Devos et al, 2021)

Epidemiological study in Lifou from 2017 to 2020

Datas collected from January 2017 to March 2020 (Devos et al, 2021)

Dr Y. M. Ducrot (Doctor) Dr A. Barnaud (Veterinary)

7

Method

Extraction

- Freeze dried fish flesh
- MeOH 90%
- Hexane clean up
- L/L partioning MeOH 60% / DCM
- Two-step SPE purification
 - Florisil Si
 - C18

fremer

Method

Extraction

- Freeze dried fish flesh
- MeOH 90%
- Hexane clean up
- L/L partioning MeOH 60% / DCM
- Two SPE purification
 - Florisil Si
 - C18

remer

LC-MS/MS

- API 4000 Qtrap (Sciex)
- CTX3C-type and CTX1B type (> 20 compounds)
- Mode: ESI⁺ MRM (33 pairs)
- 3 MRM transitions per toxin
- LC conditions: Zorbax C18 50*2.1mm (1.8µm)
- Eluent A H₂O
 - + 2 mM Ammonium formate
- Eluent B MeOH + 50 mM Formic acid
- Quantification: CTX3C standard (from ILM)

Method

Extraction

Sibat et al, 2018

- Freeze dried fish flesh
- MeOH 90%
- Hexane clean up
- L/L partioning MeOH 60% / DCM
- Two SPE purification
 - Florisil Si
 - C18

LC-MS/MS

- API 4000 Qtrap (Sciex)
- CTX3C-type and CTX1B type (> 20 compounds)
- Mode: ESI⁺ MRM (33 pairs)
- 3 MRM transitions per toxin
- LC conditions: Zorbax C18 50*2.1mm (1.8µm)
- Eluent A H₂O
- + 2 mM Ammonium formate

CTX4A

- Eluent B MeOH + 50 mM Formic acid
- Quantification: CTX3C standard (ILM)

HRMS/MS

- QTOF 6550 (Agilent technologies)
- Same LC conditions as LRMS
- ESI⁺ full scan mode (*m*/*z* 100 to 1700)
- ESI⁺ autoMSMS mode
- Data processing using MZmine 3
- Generate Molecular Network using
 GNPS
- Visualization with Cytoscape

Quantitative Results and LC-MS/MS Chromatograms

CP2 No P-CTXs detected

CTX1B = 1.98 µg Kg⁻¹ 52-*epi*-54-deoxyCTX1B = 1.52 µg Kg⁻¹ 54-deoxyCTX1B = 2.52 µg Kg⁻¹ CTX3B = 0.16 µg Kg⁻¹ CTX3C = 0.35 µg Kg⁻¹ CTX3C isomer = 0.27 µg Kg⁻¹

Total 0.78 μg CTX3C eq Kg⁻¹ 0.16 μg CTX1B eq Kg⁻¹

EFSA Threshold > 0.01 µg CTX1B eq. Kg⁻¹

Total 5.32 μg eq CTX3C Kg⁻¹ 1.06 μg eq CTX1B Kg⁻¹

Intense peaks !

1039.6/125.1

- A cluster of 4 intense peaks (9-11min)
- 3 MRM transitions of CTX3B/C
- RT drift 1.15%
- Ion ratios are different

Intense peaks !

- A cluster of 4 intense peaks (9-11min)
- 3 MRM transitions of CTX3B/C
- RT drift 1.15%
- Ion ratios are different

16

Intense peaks !

1074.5/1039.6

1039.6/125.1

2,3-diOHCTX3C

- A cluster of 4 intense peaks (9-11min)
- 3 MRM transitions of CTX3B/C
- RT drift 1.15%
- Ion ratios are different
- Cluster of 6 peaks (5-7 min)
- 3 MRM transitions of 2,3-diOH-CTX3C
- RT corresponding to CTX3C oxidation products

Intense peaks !

- A cluster of 4 intense peaks (9-11min)
- 3 MRM transitions of CTX3B/C
- RT drift 1.15%
- Ion ratios are different
- Cluster of 6 peaks (5-7 min)
- 3 MRM transitions of 2,3-diOH-CTX3C
- RT corresponding to CTX3C oxidation products
- Only CTX1B confirmed
- CTX1B = 0.256 µg eq. CTX1B Kg⁻¹

Analytical approach for P-CTXs

Analytical approach for P-CTXs

(a) Fragmentation pathways of CTX3C

HRMS of putative 2,3-diOH-CTX3C isomers

+17

x10 4

Molecular network on samples

Conclusion

- $\checkmark\,$ CTXs were detected in fish flesh from Lifou
- ✓ Toxicity > 0.01 µg CTX1B eq. Kg⁻¹ (EFSA threshold)
- ✓ 3/4 fishes linked to seafood intoxication are Ciguatera poisoning

✓ Further investigations are required to tentatively identify the intense peaks in the leopard coralgrouper (CP4)

Ongoing project in New Caledonia:

To assess the presence of any health risks associated with phycotoxins

Characterize species diversity and distribution

- Establish a strain library of benthic species of NC
 - > ~40 strains: Gambierdiscus spp., Ostreopsis spp., Coolia spp. Prorocentrum sp. ...
- highlight the bioaccumulation of phycotoxins in marine animals
 - > 100 fishes from NC and from Lifou bivalves, sea urchin and giant clams (to analyse)

Thanks to my collaborators:

- Ifremer LEAD NC (F. Antypas, <u>Thierry Jauffrais</u>)
- Ifremer LER-BO (G. Bilien, N. Chomerat)
- Ifremer PHYTOX-Metalg (S. Tanniou, K. Lhaute, D. Réveillon, P. Hess)
- Lifou Dispensaries (Dr. Y.M Ducrot, Dr. M. Bahu)
- Lifou Veterinary (Dr. A. Barnaud)
- Loyalty province of Lifou (G. Kakue, J.M. Ita)
- Louis Malardé Institute (M. Chinain, T. Darius)

Thank you for your attention

