The Screening and Identification of Marine and Freshwater Toxins in Food and Feed Using a State-of-the-Art High Resolution Mass Spectrometry Technique

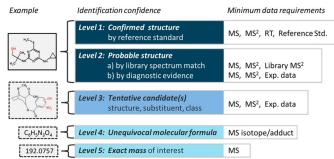
Mirjam Klijnstra

Screening, identification and confirmation

 Nowadays LC-MS/MS golden standard for confirmation (level 1)

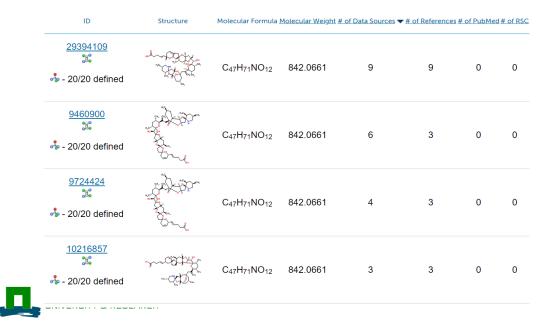
 High-resolution MS shows potential, however...

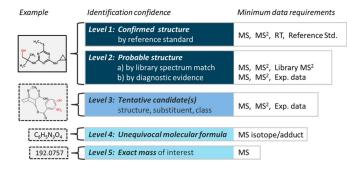
Example	Identification confidence	Minimum data requirements
H,C,B,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N	Level 1: Confirmed structure by reference standard	MS, MS ² , RT, Reference Std.
	Level 2: Probable structure a) by library spectrum match b) by diagnostic evidence	MS, MS ² , Library MS ² MS, MS ² , Exp. data
	Level 3: Tentative candidate(s) structure, substituent, class	MS, MS ² , Exp. data
C ₆ H ₅ N ₃ O ₄	Level 4: Unequivocal molecular formula	MS isotope/adduct
192.0757	Level 5: Exact mass of interest	MS



Identification level 5

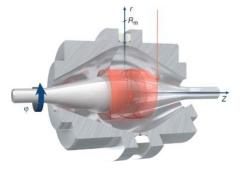
- Found a *m*/*z* 842.50491
- Potential structures (based on C, H, N and O)


Formula	Mass	RDB	Delta [ppm]
C47H72O12N	842.5049	12.5	0.008
C46H66O7N8	842.5049	18	0.015
C ₃₃ H ₇₄ O ₁₈ N ₆	842.50541	0	-0.594
C ₆₀ H ₆₄ ON ₃	842.50439	30.5	0.617
C ₃₁ H ₇₂ O ₁₇ N ₉	842.50407	0.5	0.999
C ₄₈ H ₆₈ O ₈ N5	842.50624	17.5	-1.579
C45H70O11N4	842.50356	13	1.602
C34H70O14N10	842.50675	5	-2.182
C35H76O19N3	842.50675	-0.5	-2.188
C58H62N6	842.50305	31	2.211



Identification level 4

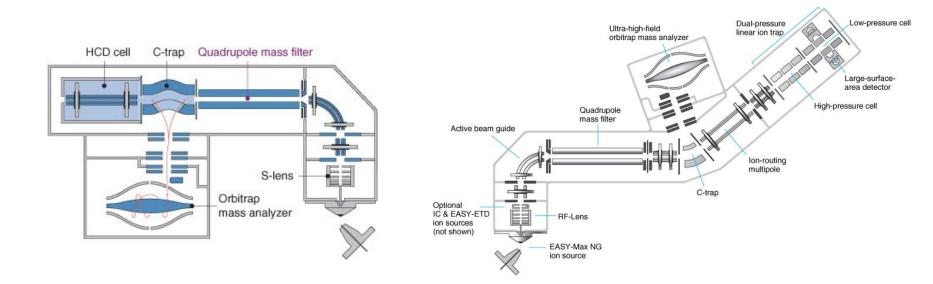
Found m/z 842.50491 + isotopic pattern $C_{47}H_{71}NO_{12}$ still 25 structural possibilities (i.e. Chemspider)


Then the challenge starts

- Often many candidates
- Generating MS² spectra
- Additional experiments and data analysis

Example	Identification confidence	Minimum data requirements
H ₃ C ₈ OH CH, N H H ₃ C NH NH NH	Level 1: Confirmed structure by reference standard	MS, MS ² , RT, Reference Std.
	<i>Level 2: Probable structure</i> a) by library spectrum match b) by diagnostic evidence	MS, MS ² , Library MS ² MS, MS ² , Exp. data
	Level 3: Tentative candidate(s) structure, substituent, class	MS, MS ² , Exp. data
C ₆ H ₅ N ₃ O ₄	Level 4: Unequivocal molecular formula	MS isotope/adduct
192.0757	Level 5: Exact mass of interest	MS

Approach we used previously



- Q-Exactive Orbitrap
- Generating Full Scan and fragmentation data in a single run

Full Scan m/z 100 - 1,500 Resolution 70,000				
All ion fragmentation	All ion fragmentation	All ion fragmentation		
m/z 100 – 500	m/z 500 - 1,000	m/z 1,000 - 1,500		
Fragments: m/z 50 – 500	Fragments: m/z 50 - 1,500	Fragments: m/z 50 - 1,500		
Resolution 17,500	Resolution 17,500	Resolution 17,500		

Moving towards a tribrid Orbitrap MS

Pictures from Thermo Fisher ⁷ https://www.thermofisher.com/

The Orbitrap IQ-X

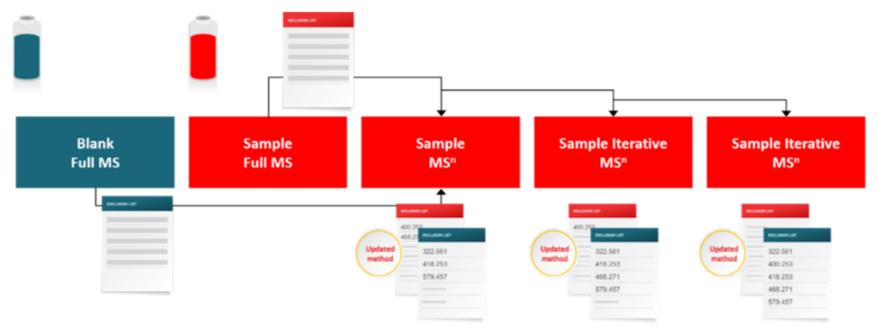
Pictures from Thermo Fisher ⁸ https://www.thermofisher.com/

Improved resolution

12,5048,43,5081,471,51723,9.2 8424449,993,994,994,995,995,20

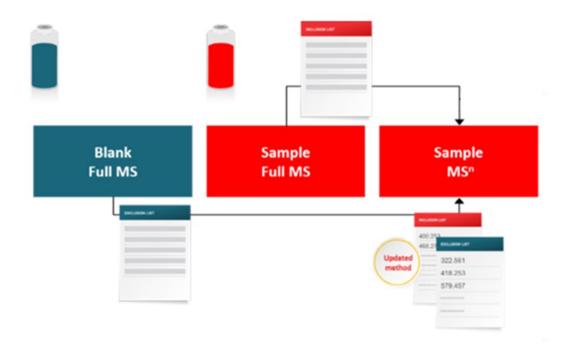
Resolution 60,000

2.5045435080789781956256

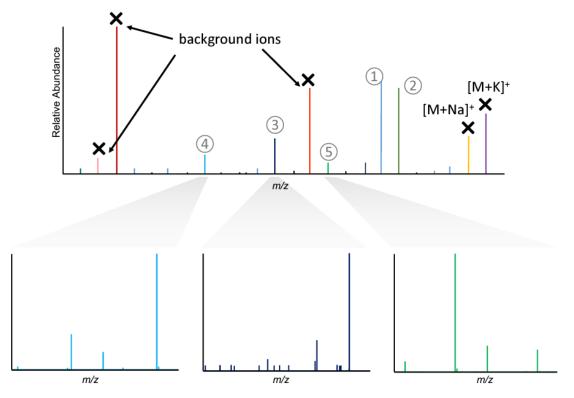

Resolution 240,000

2.50434350778446205612

Resolution 500,000

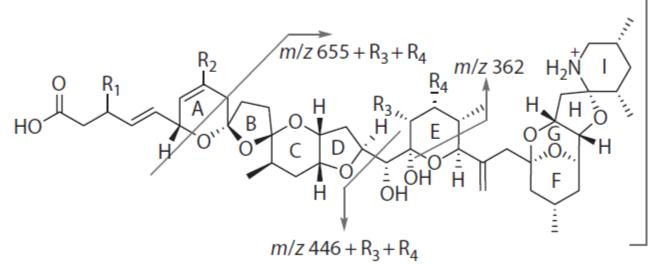

Improved measurement strategy with AcquireX

Automatically updated run-to-run inclusion/exclusion lists


Improved measurement strategy with AcquireX

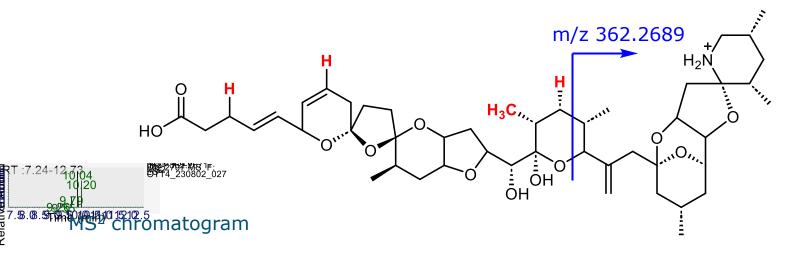
- We used a chemical blank
- Used various optimized collision energies

Using the blank to identify background ions

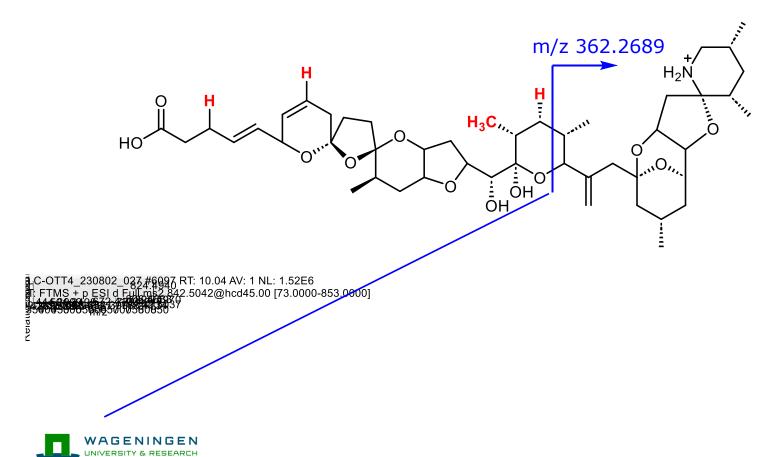

One single run!

- Used a 30, 60 stepped NCE
- Generic acid chromatography of total 20 min

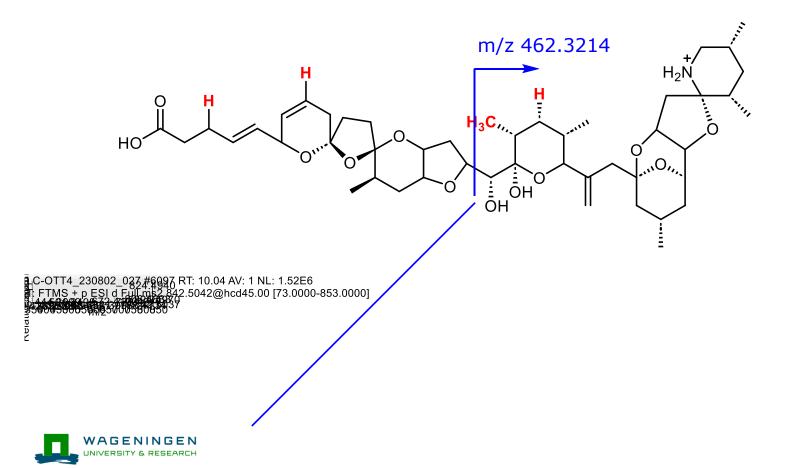
MS² triggered chromatogram


General fragmentation (fragment ion flagging)

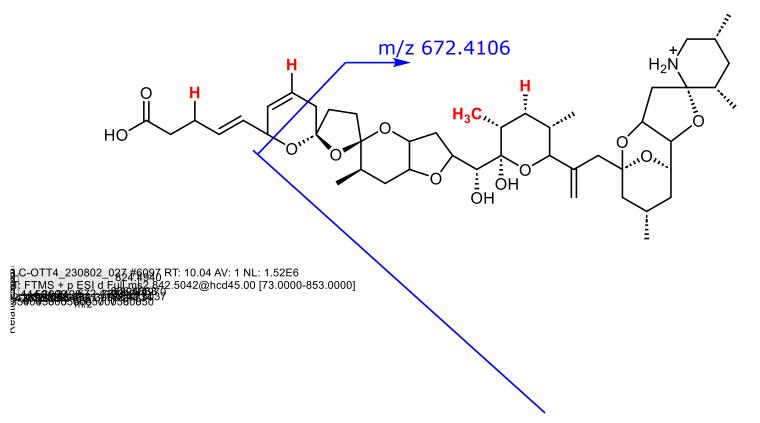
 $[M+H]^+$ m/z 824 + R₁ + R₂ + R₃ + R₄



General fragmentation (fragment ion flagging)



Azaspiracid-1 fragmentation



16

Azaspiracid-1 fragmentation

Azaspiracid-1 fragmentation

Other AZA's in the sample

AZA2

LC-OTT4_230802_027#5928 RT: 9.79 AV: 1 NL: 3.38E5 # 4751439995693957#234283.4895@hcd45.00 [73.0000-839.0000] *35909500051/2950005000

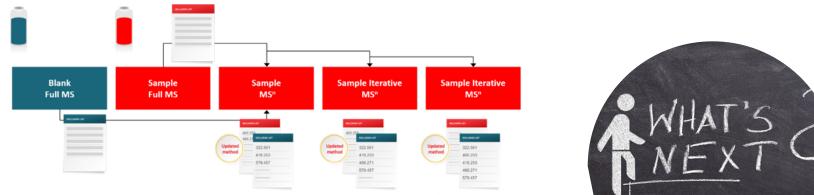
AZA3

Other AZA's in the sample

AZA4

1.C-OTT4_230802_027#570% RT: 9.46 AV: 1 NL: 1.13E5 7. FTMS + 6 5567 3001144998.4979@hcd45.00 [74.0000-869.0000] 35909360536799005300350

AZA9


McCarron et al. . Agric. Food Chem. 2009, 57, 1, 160–169 Formation of Azaspiracids-3,-4,-6, and-9 via Decarboxylation ²⁰ of Carboxyazaspiracid Metabolites from Shellfish

Next steps and possibilities

- Direct integration in the workflow of spectral databases
 - Home build or available

If only partial hit > automatic generation of spectral trees (MS³)

Conclusion

- Technique added value for discovering and rapidly identify compounds with a high level of confidence.
- Important in food and feed safety incidents.

Example	Identification confidence	Minimum data requirements
H ₂ C S H ₂ C NH H H ₂ C NH H	Level 1: Confirmed structure by reference standard	MS, MS ² , RT, Reference Std.
	Level 2: Probable structure a) by library spectrum match b) by diagnostic evidence	MS, MS ² , Library MS ² MS, MS ² , Exp. data
	Level 3: Tentative candidate(s) structure, substituent, class	MS, MS ² , Exp. data
C ₆ H ₅ N ₃ O ₄	Level 4: Unequivocal molecular formula	MS isotope/adduct
192.0757	Level 5: Exact mass of interest	MS

Thank you!

Aknowledgement:

Paul Zomer

Marco Blokland

Arjen Gerssen

This research was performed within the statutory tasks Food Safety (WOT-VV) WOT-02-006-002 and financed by the:

Ministry of Agriculture, Nature and Food Quality of the Netherlands

