

Risk Negotiation – Integrated risk analysis for One Health

Prof. Dr. med. vet. Sophia Johler, Dipl. ECVPH

Planetary Boundaries

6/9 boundaries are already crossed

=> Transformation of agro-food systems needed

United Nations SDGs & Agenda 2030

CLEAN WATER AND SANITATION

RESPONSIBLE

CONSUMPTION AND PRODUCTION

DEVELOPMENT

EU Green Deal

2030 Targets for sustainable food production

PESTICIDES

Reduce the overall use and risk of chemical and hazardous pesticides

NUTRIENT LOSSES

Reduce nutrient losses by 50% whilst retaining soil fertility, resulting in 20% less fertilisers

ANTIMICROBIALS

Reduce sales of antimicrobials for farmed animals and aquaculture

ORGANIC FARMING

Increase the percentage of organically farmed land in the EU

#EUFarm2Fork

#EUGreenDeal

Increased use of Bacillus thuringiensis biopesticides

Most common biopesticide worldwide
=> forms insecticidal parasporal crystals

• EFSA scientific opinion¹: Levels of *B. cereus* considered as a risk for consumers are also valid for *B. thuringiensis*

Bacillus cereus group

Members differ substantially in their ability to cause disease.

B. anthracis

B. cytotoxicus

B. cereus sensu stricto

B. (pseudo-) mycoides

B. weihenstephanensis

B. toyonensis

Population structure of B. cereus s. I.

Cause for concern?

- Bacillus thuringiensis strains can multiply in food¹
- Biopesticide strains express enterotoxins²
- Biopesticide strains were linked to cases of foodborne diarrheal disease based on phenotypic profiles (incl. FT-IR data)² and WGS³

¹N. Heini et al. 2020. Temperature-dependent growth characteristics of *Bacillus thuringiensis* in a ratatouille food model. *J. Food Prot.*

²S. Johler et al. 2018. Enterotoxin production of *Bacillus thuringiensis* isolates from biopesticides, foods, and outbreaks. *Frontiers in Microbiology*

³ M. Biggel et al. 2022. Whole genome sequencing reveals biopesticidal origin of *Bacillus thuringiensis* in foods. *Front. Microbiol.*

Spillover of *Bt* from vector control to food?

Artemiy Dimov

Spillover Modeling

- Use of *Bt* in mosquito control
- Example:
 - Helicopter spraying of Natural Reserve Bolle di Magadino
 - Treatments started 20 years ago

MicRISK Consortium

(Swiss Tropical Health Inst.)

University of Zurich

- Food safety
- Genomics
- **Bioinformatics**

ETH RISKCENTER

ETH AI CENTER

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Josef Teichmann

- **Mathematics**
- **Artificial Intelligence**
- Risk concepts from Finance

Matthias Filter

(Federal Inst. for Risk Assessment) Quantitative microbial

risk assessment

Katharina Stärk

biodiversity costs

Jakob Zinsstag

Modeling of health &

Federal Food Safety and Veterinary Office Risk management & regulatory affairs

- B. cereus group
- Microbial risks
- Pathometabolism

- Biodiversity
- Vector control
- **Pesticides**

Angelika Hilbeck

(Environ. Systems Sciences, ETH) Policy making (UN, EU) Bacillus cry toxins and GMO risks

Scuola universitaria professionale della Svizzera italiana

Objective

Improve the currently used classical microbial risk analysis framework to meet the challenges of future food systems as part of a circular economy.

=> Using the *B. cereus* group as a model, develop an overarching risk analysis scheme enabling FBOs, policy makers and risk managers to minimize food waste while protecting human health, biodiversity, and ecosystems.

Traditional framework for microbial risk analysis

Drawbacks

MicRISK Sounding Board

Prof. Sophia Johler UZH -> LMU

M. Ellouze (Nestlé)

K. Koutsoumanis

M. Wiedmann

(Cornell Univ.)

K. Stärk (Food Safety & Vet. Office)

Prof. Monika Ehling-Schulz **VETMED** Wien

Prof. Josef Teichmann ETH

Prof. Mauro Tonolla SUPSI/Univ. Geneva

Angelika Hilbeck ETH

Matthias Filter BfR

Prof. Jakob Zinsstag Swiss Tropical Public Health Inst.

Bigger picture

How could a novel overarching risk analysis framework look like that takes into account risks and trade-offs from multiple sectors?

Characteristics of a novel risk analysis framework:

- Participatory and interdisciplinary
- Valuation of risks
- Big data & AI enabled

Novel risk negotiation framework

Dist assessment the state of the s

Stakeholders negotiate a balanced solution taking different risk dimensions and tradeoffs into account

Rist communication

Exchange of intermation and

Implementation and review of implementation results

Risk Negotiation

Steps

- 1) Establishment of stakeholder roundtable
- 2) Problem formulation
- 3) Risk assessment and valuation
- 4) Risk negotiation
- 5) Communication and implementation
- 6) Outcome evaluation and risk re-negotiation

Risk Negotiation

Steps

- 1) Establishment of stakeholder roundtable
 - => Could be done following OECD guidelines
- 2) Problem formulation
 - => could be aided by LLMs
 - => containing LLMs in protected environments (e.g. using open source LLMs from Huggingface) can aid in overcoming privacy concerns
- 3) Risk assessment and valuation
 - => Risk assessors undertake a multi-dimensional, evidence-based risk assessment and consider different action options and trade-off analyses.

Risk Negotiation

Steps

- 4) Risk negotiation
- => Agent-based risk negotiation
- => AI can
 - i) serve as artificial stakeholder or mediator
 - ii) suggest decisions to the roundtable stakeholders by identifying equilibria of maximized benefits and minimized risks
 - iii) simulate the consequences of decisions (for individual stakeholders or the entire roundtable) and devise actionable solutions by using a human-in-the-loop approach
- 5) Communication and implementation
- 6) Outcome evaluation and risk re-negotiation

Acknowledgments

Alex Fetsch

Artemiy Dimov Danai Etter

Michael Biggel

Janine Schläpfer

MicRISK Team

Monika Ehling-Schulz (Vetmed Vienna)

Mariem Ellouze & Jason Mann (Nestlé)

Matthias Filter, Iurii Savvateev & Racem Ben Rhomdane (BfR)

Kostas Koutsoumanis (Aristotle University Thessaloniki)

Katharina Stärk (BLV)

Josef Teichmann & Angelika Hilbeck (ETH)

Mauro Tonolla (SUPSI/ University of Geneva)

Martin Wiedmann (Cornell University)

Jakob Zinsstag (Swiss Tropical Public Health Institute)

Institute for Food Safety and Hygiene (UZH)

Roger Stephan & ILS Team

Funding

Swiss National Science Foundation

Swiss Federal Food Safety and Veterinary Office

Universität Zürich

Federation of European Microbiological Societies

