Using logistics data for food safety and food security analysis

International Scientific Conference on "Global commodity chains from a risk assessment perspective" Berlin 27.5.2024

Prof. Dr. Hanno Friedrich Kühne Logistics University

(based on work with Abigail Horn, Andreas Balster, Tim Schlaich, Ole Hansen, Linda-Ina Deuchert and Sandra Rudeloff)

MOTIVATION: TRACEBACK OF FOODBORNE DESEASES (THE EHEC OUTBREAK)

Key figures:

- 4075 illnesses
- 54 deaths
- 16 Countries with cases
- 9 weeks to identify the source

Source: Frank et al (2011), Welt.de, add. Visulaization: https://elenapolozova.github.io/food-outbreak-visualization/

WHICH WAS THE MOST "PROPABLE" SOURCE?

Step 2: Probability that s is the true source given the observed outbreaks

Θ

$$P(s^* = s | \Theta) = \frac{P(s^* = s) \times P(\Theta | s^* = s)}{P(\Theta)}$$

Source: Horn and Friedrich (2019), dynamic visualization decision tree: http://www.r2d3.us

RESULTS USING AN ESTIMATED GERMAN FOOD SUPPLY NETWORK MODEL

Outbreak Week	Rank of True Source Location		Top-3 Distance from True Source (in km)	
	This Work	Effective Distance [27]	ThisWork	Effective Distance [27]
1	38	_	180.0	_
2	3	_	148.8	_
3	2	1	83.7	71.3
4	2	>10	40.8	98.3
5	1	3	28.7	43.7
6	1	1	28.7	30.3
7	1	1	28.7	30.3
8	1	5	28.7	135.0
9	1	2	28.7	65.0

Source: Horn and Friedrich (2019), Animation Elena Polozova

THE UNDERLYING "MSMRIO" MODEL WAS ESTIMAED USING TRANSPORT DATA

- 1. Between categories of food
- Industrial interactions
- E.g. production of confectionaries:
 Sugar, milk products, eggs, grain products
- 2. Between regions
 - Gravity model $T_{ij} = A_i B_j O_i D_j \exp(-\beta \cdot d_{ij})$
- Calibrated using the transport matrix from the BMDV

Source: Balster and Friedrich (2019)

DATA USED FOR THE MODEL

- Production data (statistics, reports of ministry and sector associations)
- Employment data
- Population Data
- Location data (POS and warehouses)
- Aggregate sales data of food retailers
- Trade data
- Transport data
- Not "yet" used: tracing data

KÜHNE LOGISTICS UNIVERS

INVENTORY DATA IS AVAILABLE (ON COMPNY LEVEL) BUT CAN ALSO BE ESTIMATED

Source: Hansen et al. (2019)

Prof. Dr. Hanno Friedrich - Fundamentals of Logistics and Supply Chain Management

KÜHNE LOGISTICS UNIVERSITY

EXAMPLE: LIDL WALNUT BREAD DISTRIBUTED FROM SLOVENIA THROUGHOUT EUROPE

Source: Interim Report Sandra Rudeloff (2021)

KLU

KÜHNE LOGISTICS UNIVERSITY

USING TRANSPORT AND INVENTORY DATA TO ANALYSE DIFFERENCES IN TIME OF OUTBREAKS

Source: Dissertation Abigail Horn (2017), Interim Präsentation Sandra Rudeloff (2021)

Prof. Dr. Hanno Friedrich - Fundamentals of Logistics and Supply Chain Management

 \mathbf{KLL}

KÜHNE LOGISTICS UNIVERSITY

DETAILED DATA ON CONSUMER BEHAVIOUR IS AVAILABLE

KÜHNE LOGISTICS UNIVERSITY

- Cash out data (for example GFK)
- Loyalty programs
- Credit card data
- Expense Tracker Apps
- Social network data

• ...

Mobility data (for example from navigation systems)

EXAMPLE USING MOBILITY DATA: MODELLING GROCERY SHOPPING IN WENDLINGEN

Modeled proportion of food sales in Wendlingen

Market shares of retailers in Wendlingen

KÜHNE LOGISTICS UNIVERSITY

Source: Schlaich, Horn and Friedrich (2020)

ALSO LOCATION DATA IS WIDELY AVAILABLE...

Source: KRITIS-ENV (2024)

... AND CAN BE USED TO COMPARE OUTBREAK AND LOCATION PATTERNS

Source: Presentation Sandra Rudeloff (2024)

CONCLUSIONS / OUTLOOK

KUHNE LOGISTICS UNIVERSITY

- Many opportunities to use logistics data (a lot to be done)
- More data becomes available through digitalization in supply chains
- Challenge: Need to integrate very different data sources (new standards and software ecosystems will be helpful here)
- Data gaps will remain and therefore a need to model data (especially since analysis in food safety/security often need comprehensive pictures/totals)