

Occupational inhalation exposure during surface disinfection – exposure assessment based on exposure models compared with measurement data

ISES Europe Workshop 2024,

Berlin 21.03.2024

Dr. rer. nat. Lea Anhäuser

German Social Accident Insurance Institution for the Health and Welfare Services (BGW)

Surface disinfection

Daily activity for healthcare workers

Pictures: DGUV Regel 101-605

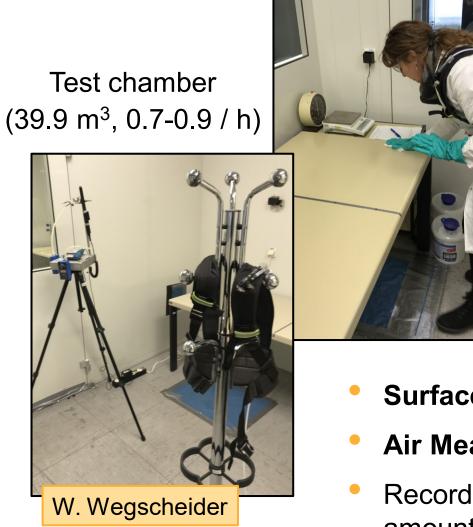
- Inhalation exposure by volatile disinfectant active ingredients (e.g. alcohols, peroxides)
- Before starting a disinfection activity \rightarrow exposure assessment

Inhalation exposure assessment at a workplace

Workplace air measurements

- German "Technical Rules for Hazardous Substances 400 and 402"
- European standard DIN EN 689

Exposure models


- Deterministic physico-chemical models
 - (e.g. ConsExpo)
- Modifying-factor models
 - (e.g. Stoffenmanager®)

Surface disinfection in the healthcare sector:

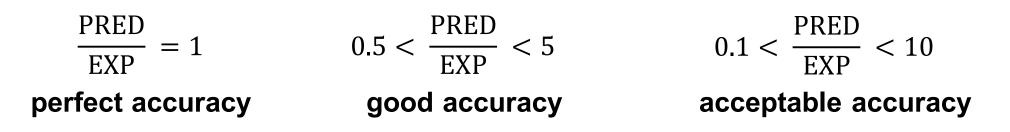
- Air measurements are often not feasible or available
- Decision as to which exposure model is suitable remains difficult
- Project: Exposure modelling in combination with air measurements at one specific workplace for surface disinfection

Surface disinfection and air measurements

Disinfectant no.	Active ingredient	Concentration in application solution	
1	Ethanol	45 g / 100 g	
2	Formaldehyde	0.051 g / 100 g	
	Glutaraldehyde	0.041 g / 100 g	
3	Glutaraldehyde	0.048 g / 100 g	
4	Hydrogen peroxide	4.7 g / 100 g	
	Peroxyacetic acid	0.15 g / 100 g	

- Surface sizes: 0.5 / 2 / 5 m² (No. 3: plus 10 / 15 m²)
- Air Measurements (personal and stationary air sampling for 15 min)
- Recording of further parameters (temperature, relative humidity, amount of applied disinfectant, disinfection/drying time)

Used exposure models


Deterministic models

- Unsteady 1-zone model L. Anhäuser
- ConsExpo (Tier 1, Tier 2) B. Piorr
- 2-component model (Tier 1, Tier 2)

Modifying-factor models

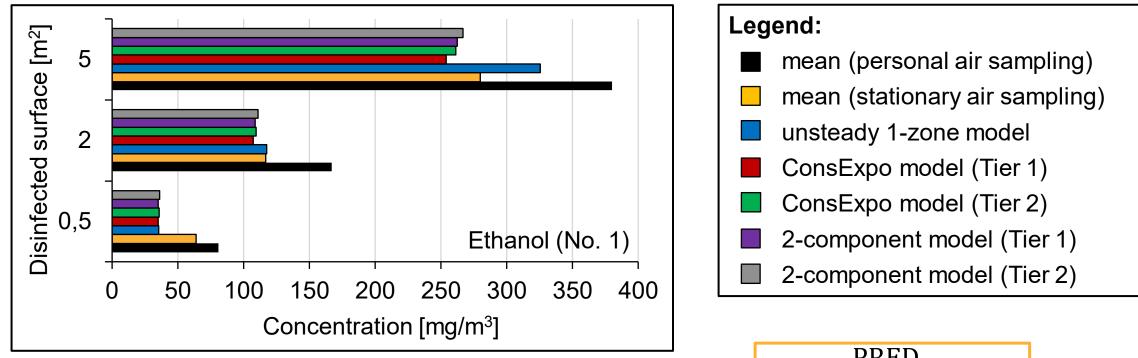
• Stoffenmanager[®] M. Arnone

Method to assess the quality of exposure models for surface disinfection:

PRED = predicted value / modelled value

EXP = mean of measured values of personal air sampling

Disinfectants with peroxides and aldehydes


Deterministic models

Disinfectant no.	Active ingredient	Comparison (PRED/EXP _{personal air sampling})		
2	Formaldehyde	$1.27 < \frac{\text{PRED}}{\text{EXP}} < 1.90$	good accuracy	
	Glutaraldehyde	$1.41 < \frac{\text{PRED}}{\text{FXP}} < 4.38$	good accuracy	
3	Glutaraldehyde	$1.55 < \frac{\text{PRED}}{\text{EXP}} < 6.69$	good/acceptable accuracy	
4	Hydrogen peroxide	$1.78 < \frac{\text{PRED}}{\text{EXP}} < 4.86$	good accuracy	
	Peroxyacetic acid	$1.20 < \frac{\text{PRED}}{\text{EXP}} < 1.83$	good accuracy	

Disinfectant with ethanol

Deterministic models

• The deterministic models underestimated the exposure

 $0.43 < \frac{\text{PRED}}{\text{EXP}} < 0.86$

Occupational safety and health: Underestimation of exposure by modelling should be avoided.

Disinfectant with ethanol

Stoffenmanager[®]

Parcantila		Comparison (PRED/EXP _{personal air sampling})		
	[mg/m ³]	0.5 m ²	2 m ²	5 m ²
50 th	80.42	0.99	0.48	0.21
75 th	257	3.17	1.54	0.68
90 th	726	8.96	4.35	1.91
95 th	1,360	16.79	8.14	3.58

good accuracy

- Stoffenmanager[®] is suitable for the assessment of the inhalation exposure of ethanolic disinfectants.
- No application for highly diluted or very reactive substances.

Summary

- Guidance for the applicability of exposure modelling for surface disinfection in healthcare or similar settings
- Combined planning of air measurements and modelling
- For the described setting:
 - Overestimation mostly below the factor of 5
 - Deterministic models are suitable for disinfectants with peroxides or aldehydes
 - Stoffenmanager[®] is suitable for disinfectants with ethanol

Journal of Exposure Science & Environmental Epidemiology

ARTICLE OPEN doi: 10.1038/s41370-023-00633-y Occupational inhalation exposure during surface disinfection exposure assessment based on exposure models compared with measurement data

Lea Anhäuser ¹[×], Benedikt Piorr², Mario Arnone³, Wolfgang Wegscheider¹ and Johannes Gerding¹

Thank you for your attention!

Dr. rer. nat. Lea Anhäuser

German Social Accident Insurance Institution for the Health and Welfare Services (BGW)

Department for Occupational Medicine, Hazardous Substances and Public Health

Unit Hazardous Substances and Toxicology Bonner Straße 337 50968 Cologne

Lea.Anhaeuser@bgw-online.de

